Techno-economic impacts of energy transition: the state of the art

Authors

  • Marina Albanese University of Naples Federico II
  • Monica Varlese

DOI:

https://doi.org/10.71014/sieds.v79i2.332

Abstract

Achieving net-zero carbon emissions goals requires tangible actions that regions, countries, sectors, and organizations should take to accelerate the energy transition along with a growing trend toward renewable energy sources. Digitalization, a phenomenon introduced by the transformative power of digital technologies, plays a key role in the energy transition process. Providing advancements in technology leads to significant changes in the way energy is produced, transmitted, and consumed. In light of that, the paper discusses the impacts of digitalization on energy transition by highlighting its benefits and crucial incentives favoring investment processes. In terms of policy messages, the paper suggests that policies based on a more integrated assessment of the links between the transforming energy sector and the overall economy would be needed. Moreover, regulations promoting financial incentives to support investments would be recommended to satisfy the novel paradigm of energy transition.

References

ASIF M., NAEEM G., KHALID M. 2024. Digitalization for sustainable buildings: Technologies, applications, potential, and challenges. Journal of Cleaner Production, 141814. DOI: https://doi.org/10.1016/j.jclepro.2024.141814

BHATTACHARYA M., PARAMATI S. R., OZTURK I., BHATTACHARYA S. 2016. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Applied energy, Vol. 162, pp. 733-741. DOI: https://doi.org/10.1016/j.apenergy.2015.10.104

BAYULGEN O. 2020. Localizing the energy transition: Town-level political and socio-economic drivers of clean energy in the United States, Energy Research & Social Science, Vol. 62, 101376. DOI: https://doi.org/10.1016/j.erss.2019.101376

BERGMAN, N., FOXON, T. J. 2023. Drivers and effects of digitalization on energy demand in low-carbon scenarios, Climate Policy, Vol. 23, No. 3, pp. 329-342. DOI: https://doi.org/10.1080/14693062.2022.2145260

BOGDANOV D., RAM M., AGHAHOSSEINI A., GULAGI A., OYEWO A. S., CHILD M., …, BREYER C. 2021. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability, Energy, Vol. 227, 120467. DOI: https://doi.org/10.1016/j.energy.2021.120467

CANTARERO M. M. V. 2020. Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries, Energy Research & Social Science, Vol. 70, 101716. DOI: https://doi.org/10.1016/j.erss.2020.101716

DESHMUKH M. K. G., SAMEERODDIN M., ABDUL D., SATTAR M. A. 2023. Renewable energy in the 21st century: A review. Materials Today: Proceedings, No. 80, pp. 1756–1759. DOI: https://doi.org/10.1016/j.matpr.2021.05.501

DONG F., LI Y., GAO Y., ZHU J., QIN C., ZHANG X. 2022. Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries, Resources, Conservation and Recycling, Vol. 177, 106002. DOI: https://doi.org/10.1016/j.resconrec.2021.106002

DU K., CHENG Y., YAO X. 2021. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities, Energy Economics, Vol. 98, 105247. DOI: https://doi.org/10.1016/j.eneco.2021.105247

DU K., LI J. 2019. Towards a green world: How do green technology innovations affect total-factor carbon productivity, Energy Policy, Vol. 131, pp. 240-250. DOI: https://doi.org/10.1016/j.enpol.2019.04.033

ERDOGAN S. 2021. Dynamic nexus between technological innovation and building sector carbon emissions in the BRICS countries, Journal of Environmental Management, Vol. 293, 112780. DOI: https://doi.org/10.1016/j.jenvman.2021.112780

EUROPEAN COMMISSION, 2023. Digitalization of the European Energy System, available at https://digital-strategy.ec.europa.eu/en/policies/digitalisation-energy

HANSEN P., LIU X., MORRISON G. M. 2019. Agent-based modelling and socio-technical energy transitions: A systematic literature review, Energy Research & Social Science, Vol. 49, pp. 41-52. DOI: https://doi.org/10.1016/j.erss.2018.10.021

IEA 2017, Digitalisation and Energy, IEA, Paris https://www.iea.org/reports/digitalisation-and-energy, License: CC BY 4.0

KHAN I., HOU F., ZAKARI A., TAWIAH V. K. 2021. The dynamic links among energy transitions, energy consumption, and sustainable economic growth: A novel framework for IEA countries, Energy, Vol. 222, 119935. DOI: https://doi.org/10.1016/j.energy.2021.119935

LANGE S., POHL J., SANTARIUS T. 2020. Digitalization and energy consumption. Does ICT reduce energy demand?. Ecological economics, Vo. 176, 106760. DOI: https://doi.org/10.1016/j.ecolecon.2020.106760

LOOCK M. 2020. Unlocking the value of digitalization for the European energy transition: A typology of innovative business models, Energy research & social science, Vol. 69, 101740. DOI: https://doi.org/10.1016/j.erss.2020.101740

MUAZU A, YU Q, LIU Q. 2023. Does renewable energy consumption promote economic growth? an em- pirical analysis of panel threshold based on 54 african countries. International Journal of Energy Sector Management, No. 17, pp. 106–127. DOI: https://doi.org/10.1108/IJESM-09-2021-0003

MURSHED M., AHMED Z., ALAM M. S., MAHMOOD H., REHMAN A., DAGAR V. 2021. Reinvigorating the role of clean energy transition for achieving a low-carbon economy: evidence from Bangladesh, Environmental Science and Pollution Research, Vol. 28, pp: 67689-67710. DOI: https://doi.org/10.1007/s11356-021-15352-w

NAM E., JIN T. 2021. Mitigating carbon emissions by energy transition, energy efficiency, and electrification: Difference between regulation indicators and empirical data, Journal of Cleaner Production, Vol. 300, 126962. DOI: https://doi.org/10.1016/j.jclepro.2021.126962

NOUSSAN M., TAGLIAPIETRA S. 2020. The effect of digitalization in the energy consumption of passenger transport: An analysis of future scenarios for Europe, Journal of Cleaner Production, Vol. 258, 120926. DOI: https://doi.org/10.1016/j.jclepro.2020.120926

NAZARI Z., MUSILEK P. 2023. Impact of Digital Transformation on the Energy Sector: A Review, Algorithms, Vol. 16, No. 4, p. 211. DOI: https://doi.org/10.3390/a16040211

NEOFYTOU H., NIKAS A., DOUKAS H. 2020. Sustainable energy transition readiness: A multicriteria assessment index, Renewable and Sustainable Energy Reviews, Vol. 131, 109988. DOI: https://doi.org/10.1016/j.rser.2020.109988

QADIR S. A., AL-MOTAIRI H., TAHIR F., AL-FAGIH L. 2021. Incentives and strategies for financing the renewable energy transition: A review, Energy Reports, Vol. 7, 3590-3606. DOI: https://doi.org/10.1016/j.egyr.2021.06.041

RAM M., AGHAHOSSEINI A., BREYER C. 2020. Job creation during the global energy transition towards 100% renewable power system by 2050, Technological Forecasting and Social Change, Vol. 151, 119682. DOI: https://doi.org/10.1016/j.techfore.2019.06.008

RITCHIE H., ROSADO P. 2020. Energy mix. OurWorldInData.org. Retrieved from https://ourworldindata.org/energy-mix

SHAHBAZ M., WANG J., DONG K., ZHAO J. 2022. The impact of digital economy on energy transition across the globe: The mediating role of government governance, Renewable and Sustainable Energy Reviews, Vol. 166, 112620. DOI: https://doi.org/10.1016/j.rser.2022.112620

SWIATOWIEC- SZCZEPAŃSKA J.; STĘPIEŃ B. 2022. Drivers of Digitalization in the Energy Sector—The Managerial Perspective from the Catching Up Economy, Energies, Vol. 15, 1437. https://doi.org/10.3390/ en15041437 DOI: https://doi.org/10.3390/en15041437

TIAN J., YU L., XUE R., ZHUANG S., SHAN Y. 2022. Global low-carbon energy transition in the post-COVID-19 era, Applied energy, Vol. 307, 118205. DOI: https://doi.org/10.1016/j.apenergy.2021.118205

TSAGKARI M, ROCA J, KALLIS G. 2021. From local island energy to degrowth? exploring democracy, self- sufficiency, and renewable energy production in greece and spain. Energy Research & Social Science No. 81: 102288. DOI: https://doi.org/10.1016/j.erss.2021.102288

TZEREMES P., DOGAN E., ALAVIJEH N. K. 2023. Analyzing the nexus between energy transition, environment and ICT: a step towards COP26 targets, Journal of Environmental Management, Vol. 326, 116598. DOI: https://doi.org/10.1016/j.jenvman.2022.116598

VALENTI M., GRADITI G., 2020. Le Smart Grid per un futuro energetico sostenibile e sicuro, focus ENEA, 2/20 Energia, ambiente e innovazione. DOI 10.12910/EAI2020-043

WANG J., MA X., ZHANG J., ZHAO X. 2022. Impacts of digital technology on energy sustainability: China case study, Applied Energy, Vol. 323, 119329. DOI: https://doi.org/10.1016/j.apenergy.2022.119329

XU Q., ZHONG M., LI X. 2022. How does digitalization affect energy? International evidence. Energy Economics, Vol. 107, 105879 DOI: https://doi.org/10.1016/j.eneco.2022.105879

ZHANG H., GAO S., ZHOU P. 2023. Role of digitalization in energy storage technological innovation: Evidence from China, Renewable and Sustainable Energy Reviews, Vol. 171, 113014. DOI: https://doi.org/10.1016/j.rser.2022.113014

Websites

https://www.italiadomani.gov.it/en/Interventi/investimenti/rafforzamento-smart-grid.html

https://www.opencup.gov.it/portale/web/opencup/elenco-progetti?p_p_id=ricercaliberaportlet_WAR_OpenCupPortlets&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&_ricercaliberaportlet_WAR_OpenCupPortlets_action=ricerca

https://www.e-distribuzione.it/progetti-e-innovazioni/PAN/il-progetto-pan.html

https://finanza.lastampa.it/News/2023/09/08/e-distribuzione-avvia-il-progetto-edge-gli-utenti-diventano-fornitori-della-smart-grid/MTY1XzIwMjMtMDktMDhfVExC

https://www.actea-project.it/il-progetto.html

https://datacellarproject.eu/uncategorized/public-energy-data-space/

https://www.gruppoiren.it/it/everyday/energie-per-domani/2022/smart-grid-cosa-sono-e-come-funzionano.html

Downloads

Published

2025-02-28

Issue

Section

Articles