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1. Introduction 
 

Time series are one of many instruments used to represent data present in a 
variety of fields, from brain activity to finance. Researchers apply clustering 
techniques to time series data for many reasons. Zhang et al. (2011) mention three 
main objectives when detecting similarities between time series: time, shape, and 
change. Similarity in time means that time series are grouped together when they 
move similarly in time; similarity in shape occurs when time series share common 
trends or sub patterns. Finally, similarity in change means that time series show 
similarity in fitted parameters referring to underlying models, which may be 
different. 

Due to the nature of this type of data, cluster analysis of time series requires 
particular techniques. Mantegna (1999) and other authors use a raw data approach 
for stock return time series. A single observation (day, week or month) of the time 
series represents a characteristic of the element and stocks are grouped together when 
they are correlated: the Pearson correlation coefficient quantifies the degree of 
interdependence between pairs of financial assets. 

Clustering algorithms allow leading information about structural organization 
aspects to be extracted from a correlation matrix of return time series whereas 
correlation matrices can be represented as complete graphs lacking a notion of 
hierarchy (De Prado, 2016). Clustering tools, spectral methods (random matrix 
theory), and correlation-based graphs are all algorithms used to extract information 
from complex systems of correlation matrices. Indeed, correlation matrices are 
subject to non-stationary market conditions and ‘measurement noise’ due to the finite 
length of the time series, which makes the analysis difficult without applying these 
filtering tools. 

We contribute to the existing literature applying the work of Miceli and Susinno 
(2004) outlined above to obtain a cluster of Exchange Traded Fund (ETF) returns 
that reflects the classification per investment class provided by the Italian Stock 
Exchange (commonly known as the Borsa Italiana). In the following sections, we 
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describe hierarchical algorithms and alternative methods to filter correlation 
matrices and we conclude with some results. 

 
 

2. Hierarchical clustering algorithm 
 
This section shows the use of a hierarchical clustering algorithm to filter 

correlation matrices of stock return time series to reduce the number of parameters. 
In fact, filtering procedure permits to extract the structure hidden in large correlation 
matrices keeping significant links and removing the noisy ones. The analysis 
considers both a static financial market and a complex system that evolves over time. 

In his first work in 1999, Mantegna investigated the correlation matrix to detect 
the hierarchical organization of stocks in a financial market. In an ultrametric space, 
the minimal spanning tree (MST) between stocks reveals the topological layout of 
the financial market that holds important meaning from the economic point of view. 
A MST, the minimum structure in terms of sum of distances between nodes, groups 
stocks with respect to the economic sector of the underlying companies. As a 
consequence, the MST is the tree associated with the single linkage clustering 
algorithm so playing the same role as a dendrogram.  

Tumminello et al. (2010) also confirm that elements (or nodes) share information 
according to the communities they belong to and that communities are organized in 
a nested structure. Hierarchical clustering algorithms enable this complex structure 
to be detected. Furthermore, Spelta and Araújo (2012) describe the minimal spanning 
tree as the corresponding representation of a fully-connected system (network) 
where sparseness replaces completeness in a suitable way. 

The steps necessary to draw an MST can be summarized as follows.  
We start with the correlation matrix of the time series of N stock returns, 

computed as the difference of the logarithm of stock prices in the time horizon T1 

       ��(�) = �����(�) − �����(� − 1)             (1) 

The elements of the correlation matrix for each pair of stocks,  

      ��� =
�(����)��(��)�(��)

����
                                                                                             (2) 

are converted into distance elements: 

 
1 The prices and returns of stocks, the financial assets in general, can be daily, weekly, monthly, or 
yearly. 
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     ��� = �2 − 2���                                                                                                                     (3) 

MSTs are based on the distance matrix computed thus. This tree graph allows the 
number of links connecting stocks to be reduced from (N(N-1))/2 (total number of 
parameters in the distance matrix) to N-1. In general, minimal spanning trees allow 
hierarchical organization to be detected in sectors and subsectors of stocks, but the 
literature shows that the result changes if the frequency of data changes. For more 
details about algorithms to derive an MST, see Moret and Shapiro (1991). 

MSTs are associated with the dendrogram of the single linkage clustering 
algorithm (SLCA); however, MSTs retain some information that the single linkage 
dendrogram disregards (Raffinot, 2017). 

This author tests some Single Linkage (SL) variants: complete linkage (CL), 
average linkage (AL) and Ward’s method (WM), associated with different 
dendrograms or hierarchical trees. We recall that: 
 
● at each step, SL combines two clusters that contain the closest (minimum 

distance) pair of elements 

● CL works opposite to SL: At each step, it combines two clusters that hold the 
farthest (maximum distance) pair of elements 

● AL considers the distance between two clusters as the average distance 
between pairs of elements belonging to those clusters 

● at each stage, WM merges two clusters if they provide the smallest increase in 
squared error. 

Other authors concentrate on MSTs as characteristic tree graphs to describe the 
correlation matrices. For example, Onnela et al. (2003b) emphasize the aspects 
already presented by previous authors, but also criticize the fact that the minimal 
spanning tree (or simply “asset tree”) only represents the static average of an 
evolving complex system. These authors explore the dynamics of the asset tree by 
computing the correlation matrix for each rolling window of width T and draw the 
MST for each period to see how the structure of the minimal spanning tree changes 
over time. They demonstrate that the basic structure of MSTs is very robust with 
respect to time, but it shrinks during market crises due to the strong global 
correlation, which makes the behavior of the assets very homogeneous.  

Spelta and Araújo (2012) also propose a measure called “residuality coefficient” 
that compares the relative strengths of the connections above and below a threshold 
distance in the tree in order to assess structural changes in the MST over time. 
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Matesanz and Ortega (2015) draw an MST for each time window to evaluate 

temporal changes in the time series of countries’ debt-to-GDP ratio. They calculate 
the agglomerative coefficient (Kaufman and Rousseeuw, 2009) of each temporal tree 
and cophenetic correlation (Sokal and Rohlf, 1962) between hierarchical trees for 
different times. An agglomerative coefficient close to 1 implies a highly nested tree 
structure and the cophenetic correlation instead gives an idea of how similar the 
grouping structure is between two different hierarchical trees. For example, during 
the market crises beginning in 2008, the value of the agglomerative coefficient was 
much less than 1 and hierarchical trees for overlapping windows were not correlated.  

Although the work of Matesanz and Ortega (2015) refers to different time periods 
and type of data considered, the results confirm that the structure of hierarchical trees 
tends to be flat and different from others during market crises. 

A critical aspect in considering dynamic MSTs is represented by the fact that the 
choice of time windows (number and length) is arbitrary, as asserted by Marti et al., 
2017. In fact, a trade off exists between data that is too noisy and too smoothed for 
small and large window widths, respectively (see Onnela et al., 2003a for details). 
 
 
2.1 Extensions of the MST: different algorithms  

 
Following the work of Marti et al. (2017), this section lists the different 

algorithms used to replace the minimal spanning tree and its corresponding clusters 
with the goal of improving upon the seminal work of Mantegna (1999). These 
algorithms are both hierarchical, with correlated graphs, and non-hierarchical. The 
latter consider a spectral method based on the study of eigenvalues of correlation 
matrices. 

With respect to hierarchical algorithms, Tumminello et al. (2005) introduce a 
graph to filter correlation matrices that preserves the hierarchical organization of the 
minimal spanning tree but includes more information. This graph is known as the 
planar maximally filtered graph (PMFG); it represents an extension of the MST. The 
basic difference between the two is the number of links considered: the MST 
contains � − 1 links, compared to 3(� − 2) for the PMFG, where N is the number 
of nodes in the graph2. 

Therefore, PMFG holds the hierarchical skeleton of the minimal spanning tree 
but is enriched with loops and cliques. As explained in Tumminello et al. (2010), a 

clique of � elements is a complete subgraph that links all � elements. Due to 

 
2 For planar filtered graphs, the genus is equal to 0. According to the definition in Tumminello et al. (2005), the 
genus is a topologically invariant property of a surface defined as the largest number of non-isotopic simple closed 
curves that can be drawn on the surface without separating it, i.e., the number of handles in the surface. 
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Kuratowski’s theorem, PMFGs can only have cliques of 3 or 4 elements. The 
number of 3-cliques and 4-cliques that can be built is 3(� − 8) and � − 3 
respectively. 

 Tumminello et al. (2007b) introduce the average linkage minimum spanning tree 
(ALMST), i.e., the spanning tree associated with the average linkage clustering 
algorithms (ALCA). These authors show that ALMST is able to detect groups 
defined in terms of economic sectors and sub-sectors of stock return slightly better 
than the MST. 

Musmeci et al. (2015) recently introduced the directed bubble hierarchical tree 
(DBHT), a novel clustering algorithm based on the topological structure of the 
PMFG. In contrast to other hierarchical techniques, the DBHT first identifies clusters 
and then sets the intra- and inter-group hierarchy. 

From the non-hierarchical side, random matrix theory (RMT) is the main 
approach used to investigate the structure of return correlation matrices of financial 
assets.  

Random matrix theory has a long history (Mehta, 2004). The first results in the 
financial sector can be found in Galluccio et al. (1998), Laloux et al. (1999) and 
Plerou et al. (1999), Plerou et al. (2002). 

The basic idea of RMT is to compare ordered eigenvalues, �� < ����, of the 

correlation matrix of returns (Eq. 1) to eigenvalues of a random Wishart matrix � =
�

�
��� of the same size. This is done to understand how different the matrix 

in question is from a random matrix. Here, � is an � × � matrix containing N 
time series of length T whose elements are independent, identically distributed 

random variables with zero mean and variance �� = 1. 
The random correlation matrix of this set of variables as � → ∞ is the identity 

matrix; when T is finite, the correlation matrix is generally different from the identity 
matrix. 

RMT proves that in the limit � → ∞ and � → ∞ with a fixed ratio � =
�

�
≥ 1 

and �� = 1, the eigenvalue spectral density is given by: 
 

�(�) =
�

��

�(����)(����)

�
                                                                (4) 

 

where �± = 1 +
1

�
± 2�

1

�
  represent the minimum and the maximum eigenvalue of 

the Wishart matrix. 
It can be shown that the eigenvalues deviating from those of a random matrix 

convey meaningful information stored in the correlation matrix. Indeed, information 
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can be extracted from eigenvalues that are higher than �� (deviating eigenvalues), 
which involves correlations between stocks that belong to the same industry or 
geographical area. The “bulk” of eigenvalues instead agree with RMT, revealing the 
random correlations. 

Onnela et al. (2004) remark that random matrix theory offers an interesting 
comparative perspective with respect to hierarchical clustering techniques.  

Other authors use RMT to filter correlation matrices and construct MSTs on this 
filtered matrix because, in order to extract the structure hidden in large correlation 
matrices, trees are easier to interpret than inspecting large matrices. With this 
procedure, Miceli and Susinno (2004) obtain a clusterization per strategies of hedge 
fund returns. Hedge fund strategies represent the investment styles stated by fund 
managers (Lhabitant and Learned, 2002). Conlon et al. (2007) have also confirmed 
this result. 
 
 
3. Data and results 

 
We consider a data set composed of 85 ETF return time series traded over the 

period December 2016-November 2017 (for �� total observations).     
According to the classification per investment class provided by the Borsa 

Italiana, Table 1 shows the ETFs classified into 11 asset classes and the number of 
ETFs belonging to the class. Summary statistics of returns for the asset classes -
mean, variance, kurtosis and skewness- are described in the same Table. The mean 
value is around 0 for each asset class. The standard deviation instead depends on the 
asset class considered: emerging equity ETFs are slightly more volatile with respect 
to other classes considered. The distribution of most ETF returns tends to be non-
Gaussian as confirmed by high values of kurtosis and negative values of skewness. 

Having filtered the correlation matrix using the RMT approach, we then 
reconstruct the distance matrix from the filtered correlation matrix. Figure 1 shows 
the MST extracted from the distance matrix, where the size of the vertex represents 
the node degree (i.e., the number of edges connected to each node) and the color 
represents the class it belongs to.  

Note that the topological structure of the ETFs in Figure 1 reflects the 
classification per investment class described in Table 1, where the three main groups 
are represented by the Equity (emerging and Europe), the Corporate (aggregate, bond 
and high yield) and Commodity classes, respectively. Indeed, clusters obtained in 
the MST represent a specific class of ETFs according to the classification per 
investment classes of Borsa Italiana. Within these groups, specific ETFs act like hubs 
with higher values of node degree: the MST reveals the importance of the Asian and 
World Emerging Market classes, which have the highest centralities.  
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Table 1 − Summary statistics of ETF returns divided into specific classes. 

ETF Class 
# of ETFs 
per Class 

Mean St. Dev. 
Kurtosis 
(excess) 

Skewness 

Aggregate Bond 4 0.0002 0.0025 5.5703 -0.4994 
Commodity 8 0.0001 0.0061 0.9043 -0.0618 
Corporate-euro 8 0.0001 0.0012 0.9405 -0.4330 
Corporate- not euro 3 0.0003 0.0030 1.4869 0.0491 
Corporate-high yield 2 0.0004 0.0014 6.6871 -0.4438 
Corporate-world 1 0.0003 0.0024 1.3115 -0.2290 

Emerging Equity-Asia 31 0.0010 0.0070 3.0669 -0.1522 

Emerging Equity-America 10 0.0009 0.0129 33.3649 -2.9396 

Emerging Equity-East Europe 4 0.0006 0.0133 4.2257 0.2659 

merging Equity-world 13 0.0011 0.0060 1.7502 -0.1888 

Equity-Europe 1 0.0005 0.0052 0.7576 0.1830 

 
As a robustness exercise of our result, we use the same data to compare the 

minimum spanning tree with the planar maximally filtered graph (PMFG). Figure 2 
shows that correlations of ETFs in the MST are also present in the PMFG, where a 
classification into investment classes is more evident from the structure of the 
network.  

 

 

 

Figure 1 − Minimum spanning tree drawn from the filtered distance matrix. 
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Source: Own elaboration on ETF data. 

 
 

Figure 2 − Planar maximally filtered graph drawn from the filtered distance matrix. 

 
  Source: Own elaboration on ETF data. 
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4. Conclusion 

 
We have presented hierarchical clustering and spectral methods in order to 

highlight stronger correlations between time series of financial asset returns. These 
methods allow information in complex datasets to be filtered by building sparse 
networks or trees but retaining the relevant edges. 

In fact, applying the random matrix approach to the correlation matrix of ETF 
returns and then drawing a minimal spanning tree as in the work of Miceli and 
Susinno (2004), allows to obtain clusters of ETFs representing  the classification into 
investment class provided by the Italian Stock Exchange. 

We have demonstrated that using RMT to filter a correlation matrix allows trees 
to be constructed that are easier to interpret with respect to the inspection of large 
matrices. 
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SUMMARY 

Filtered Clustering for Exchange Traded Fund 
 

In this work, we show how time series of Exchange Traded Funds (i.e., ETF) 
returns can be clustered by reflecting the classification per investment class provided 
by the Borsa Italiana. We use the random matrix theory  (RMT) filter to  “clean” 
noise from a correlation matrix and we then use the reconstructed filtered correlation 
matrix to draw the hierarchical tree associated with the single linkage clustering 
algorithm (minimum spanning tree). The main goal of the paper is to show that RMT 
as a filter for correlation matrices enables the construction of trees that are easier to 
interpret with respect to large matrices, even for ETF returns. 
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